

Track4 "Foot-Mounted IMU (offsite-online)" special features

Organizational aspects:

Database/dataset access

- As initiated last in Spain in 2021, Track4 is now an "offsite-online" track. That means, we ask to
 competitors to process data as if they were in real time. To do so, an interface based on a web API
 has been developed: EvaalAPI. This API will be used by competitors for sending position estimates
 and reading the sensor values:
 - https://evaal.aaloa.org/evaalapi/
- In the context of this EvaalAPI framework, two "scoring trial" ("scoring trial#1" and "scoring trial#2" described later) will be proposed to competitors. **Each of these scoring trial will be usable only once**. Competitors have thus two trials, for the evaluation.
- In order to help competitors to be prepared for the evaluation, a "testing trial" is proposed. This "testing trial" is fully accessible or reloadable (ie not restricted to a single usage as scoring trials). GroundTruth positions are included in the "testing trial" under the POSI label, for validation purpose.
- Extract from https://evaal.aaloa.org/2023/call-for-competition:
 "OFFSITE-ONLINE TRACKS: Competitors are provided with sensors data and use them to estimate the user position. Competitors calibrate their algorithms in advance using ground truth reference data (testing trials) and compete using new unreferenced data (scoring trials). Competitors run their Trials through the EvaalAPI in the usual online mode to emulate the causal, real-time behavior of onsite Tracks. Scoring trials are run on a Track-specific day during the second week of September."

Competitor admission process / Application:

See: https://evaal.aaloa.org/2023/call-for-competition

Submission of the processed results

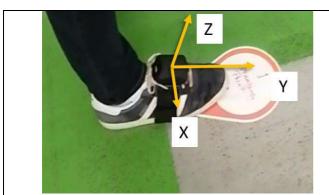
- As mentioned earlier, results have to be submitted via a web API. See above.
- A participant team can run the process up to 2 times. This lets a chance to catch-up if any issues happen. Although the competition organizers will evaluate the two scoring trials, only the best one will be considered for the contest. These two datasets correspond to two different data collection performed on the same path but not at the same time.

Important deadlines:

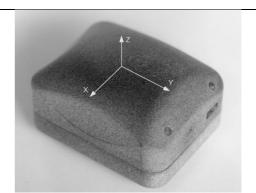
- Technical annexes published
- "testing trial" is accessible by files
- Application deadline
- "testing trial" is accessible through web API
- "scoring trial#1" and "scoring trial#2" will be accessible
- Proclamation of winners

April, 2023 April, 2023 May 31st, 2023 June, 2023

TBD (in September) September 28th, 2023


Scope

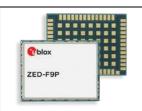
Many indoor navigation systems have been developed for pedestrians and assessing their performances is a real challenge. Benefiting from a reference solution that is accurate enough to evaluate other indoor navigation systems and assist novel research is of prime interest. According to ISO18305:2016 two different ways can be used for assessing indoor localization system: "Off-line surveyed test point" that is commonly used, or "reference system" with an accuracy at least one order of magnitude better the system you want to test. The scope of this track4 is clearly focused on the second way of assessing.


This track4 is based on the same equipment named "ULISS" as previous competitions hold during IPIN2022 and IPIN2021.

Competition Goal

The goal of this competition is to evaluate how good up-to-date INS algorithm is. Each competitor will have access to a dataset logged with ULISS (Ubiquitous Localization with Inertial Sensors and Satellites), a state-of-the-art Inertial Navigation System producing IMU data, MAG data, PRESSURE data & GNSS data, without the help of any maps.

ULISS sensor installed on the right foot (with axes), on the starting point.


ULISS sensors axes

Description of Datasets

Data is recorded from 3 different sensors:

Xsens Mti-7	IMU-Mag sensor:	
	-3D accelerometer	
	-3D gyrometer	
THE PROPERTY OF	-3D magnetometer	
	https://www.xsens.com/mti-7	
BMP280 sensor	Operation range: Pressure: 3001100 hPa	
	Absolute accuracy: ~ ±1 hPa	
	Relative accuracy: ± 0.12 hPa (typical)	
	https://www.bosch-sensortec.com/products/environmental-	
	sensors/pressure-sensors/bmp280/	
Ublox ZED-F9P dual freq. receiver	Multi GNSS Receiver : BeiDou, Galileo, GLONASS, GPS / QZSS	
	Number of concurrent GNSS 4	

Dual GNSS Bands: L1C/A, L2C, L1OF, L2OF, E1B/C, E5b, B1I, B2I

https://www.u-blox.com/en/product/zed-f9p-module

Unit and meaning of the sensors outputs of ULISS are the following ones:

Column	Xsens MTi-1 (accelerometer)	Comments
1	Acceleration label	"ACCE"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Acc X (m/s²)	
4	Acc Y (m/s²)	
5	Acc Z (m/s²)	

Sample strings for accelerometer data

ACCE, 314410.003952000, -1.25709, -4.34142, 8.75831 ACCE, 314410.008947000, -1.23771, -4.28408, 8.72497 ACCE, 314410.013942000, -1.26714, -4.3795, 8.72491 ACCE, 314410.018937000, -1.26167, -4.29823, 8.71566 ACCE, 314410.023932000, -1.25662, -4.26479, 8.71095

Column	Xsens MTi-1 (gyrometer)	Comments
1	Gyrometer label	"ROTA"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Gyro X (rad/s)	
4	Gyro Y (rad/s)	
5	Gyro Z (rad/s)	

Sample strings for gyrometer data

ROTA, 314410.004573000, 0.00275338, -0.000805736, 0.006387 ROTA, 314410.009578000, -0.00576329, -0.00401807, 0.00535798 ROTA, 314410.014582000, 0.00813067, 0.00989926, 0.00747764 ROTA, 314410.019587000, 0.00594413, -0.00079453, 0.00529695 ROTA, 314410.024591000, 0.00488472, 0.00237882, 0.0117271

Column	Xsens MTi-1 (magnetometer)	Comments
1	Magnetometer label	"MAGN"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Mag X (a.u.)	a.u. = arbitrary unit according to Xsens.
4	Mag Y (a.u.)	Tips: multiply by 0.49*1000,
5	Mag Z (a.u.)	In order to get milliGauss (mG)

Sample strings for magnetometer data

sample stilligs for magnetometer data		
MAGN, 314410.005162000, 0.224368, 0.435266, -1.14962		
MAGN, 314410.015162000, 0.22387, 0.434764, -1.14766		
MAGN,314410.025162000,0.222876,0.438141,-1.1481		
MAGN, 314410.035162000, 0.223393, 0.433828, -1.14817		
MAGN, 314410.045162000, 0.224333, 0.431291, -1.1413		

Column	BMP280 (pressure)	Comments
1	Pressure sensor label	"PRES"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Pressure (Pa)	

Sample strings for pressure data

Sample strings for pressure data
PRES, 314410.005162000, 101144
PRES, 314410.025162000, 101152
PRES,314410.045162000,101138
PRES, 314410.065162000, 101151
PRES, 314410.085162000, 101151

Column	Temperature (temperarure)	Comments
1	Temperature sensor label	"TEMP"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Temperature (Degree Celsius)	

Sample strings for temperature data

<u> </u>
TEMP, 314410.025162000, 44.1914
TEMP,314411.025162000,44.1758
TEMP, 314412.025162000, 44.1758

Column	Ublox F9P GNSS receiver (SBS)	Comments
1	GNSS SBAS information label	"GSBS"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Hexadecimal WORD	Corresponds to EGNOS SBAS Message
		Format*

^{*:} https://gssc.esa.int/navipedia/index.php/The EGNOS SBAS Message Format Explained

Sample strings for SBS (SBAS - EGNOS) data

sample strings for one (one control) data
GSBS,315499,9A494C0000000000400001F00003F80003FC0003FE0001FF0001FF80
GSBS,315618,5363FBFFDC00000000000197BBBAA01848160A0580B185BFDFEF980900
GSBS,315619,9A0A8003FE4027FFBFC7FEFFD4003FEC000003FB8003959559797BA380

Column	Ublox F9P GNSS receiver (SBS)	Comments
1	GNSS Observation label	"GOBS"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Observation data	Observation file based on RINEX 3.04 format http://rtcm.info/RINEX 3.04.IGS.RTCM Final.pdf Only data after header* is used in the context of IPIN2021-Track4.

^{*}Header of "OBSERVATION DATA" file under Rinex 3.04 format are given later in each session specific parts (headers are slightly different).

Sample strings for OBS (observation file, based on RINEX 3.04 format) data

	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
GOBS, 314856.1	199000000,G04	24066762.037 8	126471694.10925	-3666.900	39.000	
GOBS,314856.1	L99000000,G09	21204418.682 8	9	-2579.258	24.000	
GOBS,314856.1	L99000000,G06	21843663.561 9	9	-3361.335	14.000	
GOBS,314856.1	L99000000,C24	24066200.488 4	9	-1496.777	42.000	
GOBS,314856.1	L99000000,C09	41038802.886 9	213699815.76337	-1391.943	30.000	

GOBS, 314856.199000000, R10		111333055.23728	-1125.414	35.000	
GOBS,314856.199000000,R17	21027399.505 9	112521861.85837	1.771	31.000	
GOBS, 314856.199000000, G16	24420695.497 9	9	-607.284	34.000	
GOBS,314856.199000000,E25	26416183.541 9		1623.139	22.000	
GOBS, 314856.199000000, R09	23641111.957 9	9	-3901.952	26.000	
GOBS, 314856.199000000, E24	27240945.515 8	9	-857.287	38.000	
GOBS, 314856.199000000, E05	27154158.133 8	9	-2871.781	35.000	
GOBS, 314856.399000000, G04	24066902.088 8	126472426.50726	-3656.825	35.000	
GOBS, 314856.399000000, G09	21204516.880 8	9	-2576.887	25.000	
GOBS, 314856.399000000, G06	21843791.401 9	9	-3361.335	14.000	
GOBS, 314856.399000000, C24	24066258.112 4	125319321.10437	-1491.643	44.000	
GOBS, 314856.399000000, C09	41038856.136 8	213700093.52228	-1387.629	30.000	
GOBS, 314856.399000000, R10	20885839.907 8	111333279.85427	-1119.290	37.000	
GOBS, 316465.400000000, G09	22053796.355 9	7	-2965.625	42.000	22053774.011 9
9 -2311.088 2	23.000				
GOBS, 316465.400000000, G06	22958748.483 8	9	-3890.580	43.000	22958742.892 9
9 -3018.360 1	.8.000				
GOBS, 316465.400000000, G04	25190987.721 9	9	-3672.705	35.000	
GOBS, 316465.400000000, G20	20618874.632 4	9	1326.448	48.000	
GOBS, 316465.400000000, G07	20956968.745 8	9	-528.696	32.000	
GOBS, 316465.400000000, C14	26537412.626 9	9	-3269.531	39.000	

Column	ground truth position	Comments
1	ground truth position label	"POSI"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	WGS84 longitude in decimal degrees	
4	WGS84 latitude in decimal	
5	Floor Number in integer	0 : Ground Floor, -1, 1, 2
6	POSI number index	

Sample strings for ground truth position data

POSI,308945.294,-1.6313191524195993,47.22617430160391,-1,1	
POSI,308960.836,-1.6310604539849840,47.22612380681056,-1,2	

Note1: POSI frame is only used twice in scoring trials. For the first Key Point (n°1) and the second Key Point (n°2).

Note2: POSI frame is used in testing trial to help competitors to tune their algorithm.

Testing trial: dataset recorded around 15h45 (local time), the 15th of September 2021

The materials and methods provided by the competition organizers are:

Type	Description	URL to download	
Testing Trial	CSV file containing all data as described in	https://evaal.aaloa.org/files/2022/	
	section "Description of Datasets".	IPIN2022 T4 Trials.7z	
	GroundTruth is given inside		
	IPIN2022_T4_TestingTrial01.txt under POSI		
	frames.		
Allan Variance	static logfile of more than 15 hours that can	http://evaal.aaloa.org/images/2021/	
	be used for sensors bias estimation.	track4/2021.09 ULISS AllanVariance.zip	
Magnetometer	logfile of about 1 minute that can be used	http://evaal.aaloa.org/images/2021/	
Calibration	to calibrate the magnetometer sensor	track4/2021.09.15 ULISS MagCalib.zip	
GNSS	contains ephemeris data for those who	http://evaal.aaloa.org/images/2021/	
Navigation	want to use GNSS sensor.	track4/session1 gnss.nav	
file	(format RINEX 3.04)		
GNSS	3.04 OBSERVATION DATA M: Mix RTKCONV demo5 b34c 202109	red RINEX VERSION / TYPE 30 154220 UTC PGM / RUN BY / DATE	
Observation	format: u-blox UBX	COMMENT	
header	log: D:\IPIN2021\DataCollection\2021.09.15_15h	.30_Acquil\ULISCOMMENT MARKER NAME	
		MARKER NUMBER MARKER TYPE	
		OBSERVER / AGENCY	
		REC # / TYPE / VERS ANT # / TYPE	
	4337853.3676 -123576.7925 4658733.9793	APPROX POSITION XYZ	
	0.0000 0.0000 0.0000 G 8 C1C L1C D1C S1C C2X L2X D2X S2X	ANTENNA: DELTA H/E/N SYS / # / OBS TYPES	
	R 8 C1C L1C D1C S1C C2C L2C D2C S2C	SYS / # / OBS TYPES	
	E 8 C1X L1X D1X S1X C7X L7X D7X S7X S 4 C1C L1C D1C S1C	SYS / # / OBS TYPES SYS / # / OBS TYPES	
	C 8 C2I L2I D2I S2I C7I L7I D7I S7I	SYS / # / OBS TYPES	
	2021 09 15 13 48 01.2070000 2021 09 15 14 33 04.2070000	GPS TIME OF FIRST OBS GPS TIME OF LAST OBS	
	G L1C	SYS / PHASE SHIFT	
	G L2X -0.25000 R L1C	SYS / PHASE SHIFT SYS / PHASE SHIFT	
	R L2C E L1X 0.00000	SYS / PHASE SHIFT SYS / PHASE SHIFT	
	E L7X 0.00000	SYS / PHASE SHIFT	
	S L1C C L2I	SYS / PHASE SHIFT SYS / PHASE SHIFT	
	C L7I	SYS / PHASE SHIFT	
	12 R01 1 R02 -4 R07 5 R08 6 R09 -2 R10 -7 R17 4 R22 -3 R23 3 R24 2	R11 0 R16 -1 GLONASS SLOT / FRQ # GLONASS SLOT / FRQ #	
	C1C 0.000 C1P 0.000 C2C 0.000 C2P	0.000 GLONASS COD/PHS/BIS	
RINEX 3.04	Specification of RINEX format	http://evaal.aaloa.org/images/2021/	
spec	The Receiver Independent Exchange	track4/RINEX 3.04.IGS.RTCM Final.pdf	
Spec	Format, Version 3.04	THE THIRD S.OT. TOS.IVICIVI I HIGI.PUI	
	i oilliat, veisioil 3.04		

Scoring Trial#1: coming soon

Note about Maps use

- Even if maps may be allowed in others tracks, for this one, it is NOT. Track chairs, in such a
 case, could cancel contributions of competitor.
- o Algorithms are not supposed to embed or access maps to enhance positioning.

Key Points:

- We target between 80 and 100 key points for evaluation of Track4
- But exact timings are not given anymore. This is the major change of version 1.3 of this
 document. Even if a timings list has been given in previous versions, this will NOT be used
 for the final evaluation.
- Evaluation is now based like other Tracks: i.e. position has to be computed and sent twice a second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.
- o The output format is described in the chapter "Description of the Output File" here after.

Points given in order to get a good first heading:

Coordinates of Key Point n°1: coming soon

Coordinates of Key Point n°2: coming soon

Scoring Trial#2: coming soon

Note about Maps use

- Even if maps may be allowed in others tracks, for this one, **it is NOT**. Track chairs, in such a case, could cancel contributions of competitor.
- Algorithms are not supposed to embed or access maps to enhance positioning.

Key Points:

- We target between 80 and 100 key points for evaluation of Track4
- But exact timings are not given anymore. This is the major change of version 1.3 of this
 document. Even if a timings list has been given in previous versions, this will NOT be used
 for the final evaluation.
- Evaluation is now based like other Tracks: i.e. position has to be computed and sent twice a second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.
- o The output format is described in the chapter "Description of the Output File" here after.
- Points given in order to get a good first heading:

Coordinates of Key Point n°1: coming soon

Coordinates of Key Point n°2: coming soon

Description of the Output stream to return by competitor

For each scoring trial, competitor is asked to give processed data inside the field "position" of the *GET /TRIAL/nextdata* EvaalAPI request. The string "position" has to be composed of the 4 following fields:

- Field 1: WGS84 longitude in decimal degrees with at least 9 decimal digit resolution
- Field 2: WGS84 latitude in decimal degrees with at least 9 decimal digit resolution
- Field 3: Floor Number in integer (0 : Ground Floor, -1, 1, 2)
- Field 4: Incrementing counter starting from 1. 1 being the first point computed by competitor, 2 being the second, and so on...

Comma (",") has to be used as data delimiter.

Assessment will take into account the PTS (timestamp relative to the last position) return by *GET /TRIAL/estimates* EvaalAPI request.

Examples of successive string "position" included in GET/TRIAL/nextdata requests:

```
-1.542614572,47.217689856,0,1
-1.542614573,47.217689855,0,2
-1.542614574,47.217689854,2,3
...
```

Corresponding example of GET/TRIAL/estimates request:

```
pts,c,h,s,pos
217034.000,0.000,0.000,45.000,-1.542614572,47.217689856,0,1
217034.500,1662121746.081,0.500,43.762,-1.542614572,47.217689856,0,1
217035.000,1662121747.877,0.500,45.000,-1.542614573,47.217689855,0,2
217035.500,1662121749.670,0.500,45.000,-1.542614574,47.217689854,2,3
```


Evaluation criterion

The final metric will be based on the accuracy for the correct floor detection and the horizontal positioning error. In particular, the score for comparing the different location systems will be based on the following equations:

Accuracy Score = 3rdQuartile{SampleError(R_i, E_i)}, \forall groundtruth reference in all final test sets SampleError(R_i, E_i) = Distance(R_i, E_i) + (penalty × floorfail)

where:

- "3rdQuartile" is the third quartile error, in meters, of a cumulative error distribution function, i.e., the error value that includes 75% of estimations (sample errors) with a lower error.
- R_i is the actual position (ground truth).
- E_i is the predicted position by the method proposed by the contest participant.
- floorfail is the absolute difference between actual floor and the predicted one.
- penalty is used to penalize errors in estimating the floor. penalty is set to 15 m.
- Distance(R_i , E_i) calculates the Euclidean distance between coordinates (longitude and latitude) of R_i and E_i .

The team with the lower "Accuracy Score" wins.

Contact points and information

For any further question about the database and this competition track, please contact to:

- Miguel Ortiz (miguel.ortiz@univ-eiffel.fr) at the University Gustave Eiffel, France.
- Ni Zhu (<u>ni.zhu@univ-eiffel.fr</u>) at the University Gustave Eiffel, France.

Introduced changes

For any further qu	uestion about the d	atabase and this competition track, please contact to:	
Version 1.0	April 21 st	First version	