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I. INTRODUCTION

Pedestrian indoor navigation systems constructed by
foot-mounted inertial measurement units (IMUs) have
shown promising prospects due to their potential ap-
plications in a wide range of services. Meanwhile, the
improvements in accuracy of inertial sensors (e.g., gy-
roscopes, magnetometers, etc.) have made it possible
to use them for navigation systems. Thus, numerous
technologies of indoor positioning have been developed,
and pedestrian dead-reckoning (PDR) system is known
as one of the most perspective solutions.

The PDR system is tracking system using accruing
vectors including both step length and step heading. As
drift errors which come from the IMU sensing errors
or data processing have serious impacts on the accuracy
of the PDR system, researchers have carried out many
methods to reduce the drift errors, such as Foxlin’s
zero velocity update (ZUPT), zero angular rate update
(ZARU)

[1]
, the kinetic models of human motion (e.g., a

step-length model
[2]

or a velocity model
[3]

), analyzing
the accelerometer and gyro outputs to determine an
orientation

[4]
, etc. According to these reports, the errors

of the step length calculated from accelerations measured
on the waist, torso, or head can reach accuracy between
3% to 10%

[5], [6]
. However, these errors will accumulate

quickly if the user walks unsteadily or on slopes. So that
these systems have not put into pratical application.

In this report, we propose a solution constructed by
PDR and INS technologies, also with the application
of human kinetics. We also suggest a new algorithm
named as dual ZUPT (D-ZUPT) to derive step length
and improve the whole accuracy of PDR system. Fig 1
shows the diagram of the system structure. The main
function of the scheme is listed below, and the details of
each module in the system are provided in the following
section.

• Filter and correct the raw data form the several
sensors;

• Utilize the acceleration and gyroscope data to detect
the step and estimate the pedestrian’s step length by
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D-ZUPT algorithm.
• The gyroscope and geomagnetic data is used to

calculate the pedestrian’s dynamic headings.
• Combined with the above two parts, we take full

advantage of whole data to form the Step and
Heading System (SHS).

• Finally, the SHS can return the pedestrian’s real-
time position after the calibration of Kalman filter.

II. METHDOLOGY

This section presents the details of how a pedestrian
is tracked with our PDR system. We use the D-ZUPT
algorithm to estimate the dynamic step length. Several
methods (i.g. ZARU and HDR) are adopted to reduce
the heading drift in our system. Finally, a Kalman-based
filter is applied to estimate the position and attitude of
the pedestrian.

A. Dynamic Step Length Tracking

Fig.1 shows the flow of proposed whole algorithm
[7]

.
As shown in Fig.1, the original sensing data contenting
measuring errors (e.g. noise, temperature bias, gyroscope
bias offset, etc.) are filtered and calibrated. Then, the
calibrated tri-axial acceleration vector am = [ax ay

az] is transformed form IMU coordinate frame into
navigation coordinate frame with formula (1) and (2).
Where R is the rotation matrix, and an = [aN aE aD]
is the acceleration vector based on navigation coordinate
frame.

R =

[
q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

]
(1)

Where q = [q0 q1 q2 q3] is rotation quaternion which can
be derived by the gyroscope data sensed by IMU

[8]
.

an = R× am (2)

After an is derived, the D-ZUPT points can be decided
by analyzing the pedestrian movement. Fig.2 shows the
decomposition of gait cycle and corresponding acceler-
ation signals sensed by IMU.

Each step unit contains four special events: heel-lift,
toe-off, heel-strike, flat-foot. Each step unit begins from
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Figure 1. Scheme of proposed PDR system

heel-lift, and then experiences toe-off, heel-strike, flat-
foot, finally end at heel-lift. In D-ZUPT algorithm, toe-
off, which means the moment of toes leaving the ground,
is defined as first zero velocity update (f-ZUPT), and
heel-strike, which means the moment of heel touching
the ground, is defined as second zero velocity update (s-
ZUPT). The following methods are utilized to detect the
moment of toe-off and obtain f-ZUPT.

{
| δa

N
i

δt | + |
δaEi
δt | + |

δaDi
δt |≥ Ath

| aNi | + | aEi | + | aDi |≤ ath
(3)

Where, t is the sampling interval, [aNi aEi aDi ]is the
tri-axial acceleration vector at the sampling point i, Ath
and ath stand for the slope threshold and the acceleration
threshold respectively. The moments are set as f-ZUPT
if the tri-axial acceleration vector meets formula (3) at
the sampling point i. Based on abundant experimental
data, we set Ath as 58m/s3, and ath as 14m/s2 in our
experiments.

When pedestrian’s heel touches the ground, the accel-
eration vector have a turning-point. Thus the acceleration
vector should meet formula (4):

δani
δt

= 0 (4)

In D-ZUPT algorithm, the sampling points which meet
the formula (4) are define as heel points group (lpg), and
s-ZUPT is derived by two steps:

1. Detecting the absolute value of the acceleration
vector in lpg and obtain the maximum absolute value
of the acceleration vector at the sampling point m.

2. The second sampling point after m at lpg is selected
as s-ZUPT as shown in Fig 2.

After the f-ZUPT and s-ZUPT are obtained, the step
length can be estimated by the double integration from
f-ZUPT to s-ZUPT.

SNsSEs
SDs

 =

SN0SE0
SD0

+



s−ZUPT∑
i=f−ZUPT

V Ni δt

s−ZUPT∑
i=f−ZUPT

V Ei δt

s−ZUPT∑
i=f−ZUPT

V Di δt


(5)

Where [SNs SEs SDs ] is the tri-axial step length at s-
ZUPT, [SN0 SE0 SD0 ] is the tri-axial step length at f-ZUPT
and set as zero, [V Ni V Ei V Di ] is the tri-axial velocity at
sampling point i and calculated as following:

V NsV Es
V Ds

 =

V N0V E0
V D0

+



s−ZUPT∑
i=f−ZUPT

aNi δt

s−ZUPT∑
i=f−ZUPT

aEi δt

s−ZUPT∑
i=f−ZUPT

aDi δt


(6)

Where [V Ns V Es V Ds ] is the tri-axial velocity at s-
ZUPT, [V N0 V E0 V D0 ] is the tri-axial velocity at f-ZUPT,
[aNi aEi a

D
i ] is the tri-axial acceleration at sampling point

i.
Therefore, based on the above-processing, the step

length can be estimated by formula (7).

L =
∑

Lunit

=
∑√

(SNs )2 + (SEs )2 + (SDs )2 (7)

Where L is the total step length (moving distance of
the pedestrian) and Lunit is the step length for one step
unit.

B. Dynamic Orientation Tracking

The orientation of pedestrian is tracked by integrating
the angular velocity vector ω(t) = [ωx(t) ωy(t) ωz(t)]
obtained from gyroscope. In a short sampling period δt,
let ω = [ωx ωy ωz] be the corresponding angular velocity
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Figure 2. Decomposition of gait cycle and acceleration signals

sample, and δΨ = [δψ δθ δφ] represent small rotated
angle vector. The local coordinate system has its own
x, y and z axes respectively. Hence, the rotation angles
δΨ = ωδt. When δt is short, the angles δΨ become
small. Using approximations and ignoring the products
of angles in (1), the rotation matrix for this period is: 1 −δψ δθ

δψ 1 −δφ
−δθ δφ 1

 = E3×3 + Ωδt (8)

where E3×3 is a 3× 3 identity matric, and

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (9)

Mathematically, the direct cosine matrix (DCM) is
accomplished by transformation of three sequential ro-
tations from the axes in the global coordinate system. If
the DCMs are R(t) and R(t + δt) at time t and t + δt
, respectively, C(t) is the rotation matrix which relates
the local coordinate at time t to the local coordinate at
time t+ δt. Then:

R (t+ δt) = R (t) × C (t) (10)

Using (8) the change rate of DCM can be expressed
by:

δR (t)

δt
= R (t)×Ω (11)

For a period of [t, t+ δt] , the solution to (11) is

R (t+ δt) = R (t)× exp
(
t+δt

∫
t

Ω (t) dt

)
(12)

Let ω̄ =
∥∥ ωx ωy ωz

∥∥ , the DCM update equa-
tion is obtained as each new angular velocity sample as:

R (t+ δt) = R (t) ×
(

E3×3 +
sin ω̄

ω̄
Ω +

1 − cos ω̄δt

ω̄2
Ω2

)
(13)

C. Heading Drifts Errors Correction

1) Zero Angular Rate Update: Zero Angular rate
update (ZARU) can help estimate the bias of gyroscope
when the person is in a still phase. It reduces the heading
drifts and provides a very good method (fully observ-
able) to quickly find an approximation of gyroscope
biases

[9]
. Besides, it can offer well performance in the

situation where there is no initialization or where the
stance is too short (unstable) or fast walking.

2) Heuristic Drift Reduction: Heuristic drift reduc-
tion works with the assumption that most of the time
human walks in straight paths inside buildings along the
corridors. With this assumption, it corrects the computed
heading rate of turn. If the possibility of the pedestrian
walks straight along a corridor is high, HDR will apply a
correction method to the gyro output, which contains the
bias error to reduce the heading error

[10]
To distinguish

the near straight path from the curved path, we can
use two different methods to analyze the orientation
change among successive steps in yaw space as shown
in equation (14).

∆ψk = ψk −
1

n

n∑
m=1

ψk−m (14)

If |∆ψk| < th∆ψ , then we can supposed that the
pedestrian is walking in a straight line. Where th∆ψ is
the threshold value.
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In our system, the th∆ψ is assumed between (0.5 2.5).
However, varies based on the type of scenarios. The error
corrector utilizes the error estimates to refine the raw INS
states by

Cnbk =

[
2E3×3 + Ωk∆t

2E3×3 − Ωk∆t

]
Cnbk−1 (15)

V nk = V nk − δV nk (16)

Pnk = Pnk − δPnk (17)

Where Cnbk−1 is the corrected attitude matrix, Ωk is
the skew symmetric matrix used to refine the attitude
matrix, V nk is the corrected velocity, and Pnk is the
corrected position.

Thus, in our system, we adopt both ZARU and HDR
algorithms to reduce the heading drifts, and we have got
encouraging results in the experiments.

Figure 3. Working mechanism of Kalman Filter

3) Kalman-based Filter (KF): The Kalman-based fil-
ter is used to mash the data from different sensors and
estimate the errors in the navigation solution of the
inertial navigation system, and the error estimates are
then fed back into the system to correct the navigation
system. Theoretical analysis and experiential simulation
show that, with the Kalman filter, our system can achieve
good performance and high positioning accuracy.

Kalman Filter works based on a close-loop feedback
mechanism: the filter estimates the process state and then
obtains feedbacks from noisy measurements

[11]
. There-

fore, the process for KF can be divided into two steps:
prediction (or time update) and update (or measurement
update). The diagram of the KF algorithm is shown in
Fig.3. where x̂k/k−1 and P̂k/k−1 represent the a priori
state estimation and covariance matrix at the epoch k;
x̂k−1 and x̂k are a posteriori state estimation at the
epochs k − 1 and k, Pk−1 and Pk are a posteriori error
covariance matrices; Kk is the filter gain; and I is the
unit matrix.

Based on above techniques and algorithms, we con-
structed testing platform to verify the feasibility of

Figure 4. Foot-mounted module and a experimental sample

our system. As shown in the Fig.4 above, our module
designed by ourselves is mounted on the heel and there
is a sample of our experiments done in our research
building. And our experimental simulation platform can
reach an average error of about 5%. Besides, we are
willing to integrate with this competition and check the
stability and accuracy of our system.
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